STATUS OF CERES CLOUD ALGORITHMS

P. Minnis, D. F. Young

NASA LaRC

S. Sun-Mack, Q. Z. Trepte, Y. Chan SAIC

P. Heck, D. Spangenberg AS&M

CERES STM T2, October 16, 2003

MAIN OBJECTIVES

- Finalize Terra MODIS Edition 2 algorithm
 - Develop and implement changes & improvements Polar mask poor at night & twilight
- Select GMAO GEOS 4 or ECMWF

Polar Mask Improvements

1. Daytime Polar:

- reduced false clouds over super cold ice surface (Antarctica & Greenland).
- added thin Cirrus detection test.
- added low clouds detection for high SZA.
- included Tskin test for detecting clear land and snow/ice surfaces.

2. Twilight Polar:

- improved Terra & Aqua twilight detection using 1.6 (2.1), 0.6 and 3.7 μ m reflectances
- reduced discontinuity across from day-to-twilight-to-night.
- separate cloud tests for super cold ice caps.

3. Nighttime Polar:

- refined thresholds for low clouds, inversion clouds, snow/ice surface tests.
- added separate cloud detection tests over super cold plateau to prevent call to ice cap clouds. (including T6.7 T11, T8.5 T11 tests)
- better clear land detection using T6.7 T11 tests etc.
- extended polar nighttime tests to non-polar regions where ancillary maps indicates snow/ice

4. Eliminated TBDs pixels in both daytime and nighttime polar masks by adding minimasks.

(including coastal regions where snow/ice maps are uncertain)

11/12/00 7 UTC

CER_ECV_Terro_MODIS_SSIT_000000.2000111207_35

[-118.90, 80.04]

[183.44, 88.99]

[-125.73, 82.31]

[-166.29, 50.54]

Ed2

Ed1 -64 Wm² Ed2 -47 Wm²

3/4/01 7UTC

Ed1 -65 Wm² Ed2 -15Wm²

Ed2

Ed1

Ed1

Dec 31
Night

Ed2

July 5, 2001 Case

Calibration not source of non-polar decrease

June 14, 2001 Case

Antarctic values decreased, twilight better

Dec 31, 2000 Case

Increase in polar night, still < sfc

Dec 21, 2000 Case

Increase in polar night, much closer to sfc

New polar algorithm did not eliminate bias, it reduced it.

$$Ed1 = -60 \text{ Wm}^2$$

$$Ed2 = -25 \text{ Wm}^2$$

Surface LW Clear-sky Comparison

OTHER CHANGES

- (1) Removed the overwrites from Welch mask when CERES mask returns TBD over polar region at daytime.
- (2) Added the scheme of updating clear sky overhead sun albedo for each clear pixel for 1.6 um.
- (3) Modified to only process every 2nd scanline and every 4th pixel (2x4).
- (4) Polar region and coastal area where no microwave snow and ice information (about +/-50km of coasts) overhead-sun albedo from CRH 0.6um map updated from day before used to compare with threshold for IGBP type & season. Threshold over ocean = average IGBP overhead sun albedo plus 3-sigma. Threshold over one of land IGBP types is its average overhead sun albedo plus 2-sigma. Exceeding this threshold over ocean sets sea-ice, over land sets snow.
- (5) Removed non-unity surface emissivity from cloud mask's clear sky inputs (clear-sky brightness temperature for 11um and 12um) for non-polar regions. Surface emissivity still used for polar region cloud mask and for all cloud properties.
- (6) Passed microwave sea-ice fraction into the cookie dough with each imager pixel.
- (7) Over snow-ice non-elevated land, where an inversion cloud height was calculated from GOES lapse rate, the MOA skin temperature used in calculation was replaced by the daily averaged MOA air surface temperature.
- (8) Re-created 12 month of clear sky start-up map for 0.6um using clear sky updated Terra-MODIS Edition1A maps, where when IGBP = 15 (permanent snow) set overhead sun albedo = 0.89 (from snow-ice reflectance model).
- (9) Added 4 more polar sites for Clouds validation sites

Summary

- Nocturnal clouds much improved over poles, but not perfect
- Need more ground truth
- Twilight transition is better than before
- Decrease in nonpolar clouds due to inclusion of sfc emissivity in all aspects of the mask, only used in retrievals previously

Cloud Height Change over Land

As documented in the proposal: low cloud heights over land were typically overestimated because soundings missed inversion heights

Solution: Use lapse rate method for lower layers in the same manner as over ocean. 24-hr mean surface air temperature becomes anchor of the lapse rate. Blend into soundings by 500 mb.

July 5, 2001 Water Cloud Height Comparison, Land

Mean difference ~ 0.3 km, no significant changes in other cloud heights

- 3.7- μ m Solar Constant: To use or not to use
- MODIS Team increased the 3.7- μ m channel with no comment
- Its use yields a 0.5- μ m increase in re and a slightly larger increase in De -> more compatible with VIRS and Dong retrievals over SGP
- Do we implement it or not?

Australia, January 3, 2001, 1320 UTC

DAO surface too hot in center of desert

India, January 3, 2001, 1650 UTC

DAO too hot over northern India

EC resolves mountains better

Nobody does Tibet right!

Night Cloud Amount Differences 1/10/01

Daytime

Cloud Amount Differences 1/10/01

SUMMARY OF CLOUD AMOUNT DIFFS

	Land		<u>Ocean</u>	
<u>Day</u>	Non-Polar	Polar	Non-Polar	Polar
DA	0.003	0.006	0.002	-0.001
D30	-0.002	-0.003	0.002	0.002
D30E	-0.008	-0.003	-0.007	0.002
Night				
DA	0.025	0.008	0.007	-0.006
D30	-0.008	0.008	0.003	0.002
D30E	-0.035	0.010	-0.017	-0.017